Mebelhoff.ru

Мебель HOFF
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Смещение ламп выходного каскада

Смещение ламп выходного каскада

Напряжение смещения влияет на характер звука, правильную работу и срок службы ламп выходного каскада. Опытный пользователь может сам отрегулировать фиксированное напряжение смещения при замене ламп. В противном случае нужно доверить это дело специалисту. Рэндалл Смит из “Mesa Boogie” говорит: «за 12 лет активного ремонта гитарных усилителей одной из наиболее частых проблем является неправильная настройка Bias, либо его отклонение из-за вибрации».

Фиксированное смещение лампы Автоматическое смещение лампы

Что такое смещение (bias)

Лампа усиливает сигнал, поданный на её управляющую сетку. Она будет делать это при наличии на сетке более отрицательного напряжения относительно катода. Тем самым регулируется количество электронов, которые проникают сквозь сетку на пути от катода к аноду. Меняя напряжение на сетке, мы можем менять напряжение на выходе (аноде). Существует две разновидности смещения:

  • Резистор между минусом источника питания и сеткой лампы сам устанавливает оптимальное отрицательное напряжение. Сопротивление этого резистора подбирается индивидуально для каждой конкретной лампы. При автоматическом смещении на катодном резисторе рассеивается относительно большая мощность, которая могла быть отдана в нагрузку. В качестве компенсации приходится увеличивать напряжение питания выходных ламп, что приводит к снижению КПД.
  • Фиксированное смещение подразумевает одно и то же отрицательное напряжение, которое настраивается переменным резистором на определенную величину. Такой тип позволяет получить более высокую мощность в ущерб качеству звука. Напряжение может формироваться через отдельный выпрямитель и обмотку силового трансформатора, поэтому практически не зависит от величины анодного напряжения, как в случае с автосмещением.

Push-Pull усилители

Двухтактный выходной каскад, также известный как класс «В» или «АВ», способен обеспечивать достаточно серьезную выходную мощность, в отличие от однотакта (single ended). В таком каскаде одна лампа (или несколько включенных параллельно) используется для восходящей части волны, а другая – для нисходящей части исходного сигнала. Очень похоже на качели, проталкивающие ток в акустическую систему через выходной трансформатор. Для достижения максимальной эффективности фиксированный bias сделан крайне отрицательным, вплоть до того момента, когда лампы могут усиливать только положительную полуволну – это известно как смещение вблизи отсечки.

В чистом классе «В» проблемы начинаются при переходе сигнала через нулевое значение. Лампы по своей природе имеют нелинейную характеристику – в наибольшей степени это проявляется в драйверном каскаде. Здесь появляются искажения типа «ступенька» (crossover distortion), возникающие при переходе сигнала через «ноль». Степень отклонения от линейной зависимости характеризуются общим коэффициентом гармоник (Кг).

Лучший способ противостоять таким искажениям – сделать одновременное усиление в области нулевого значения. Другими словами, отрицательная полуволна начнет усиливаться в тот момент, когда сигнал находится в верхней части амплитуды. То же самое должно происходить и в обратном направлении. Чем идеальнее соблюдение этого правила, тем больше усилитель приближается к классу «АВ» и «А».

Настройка смещения ламп выходного каскада

Как убедиться в правильной настройке смещения? Нужно измерить напряжение на катодном резисторе, подсоединив плюсовой щуп мультиметра к катоду лампы, а минусовой – на общий провод (минус питания). Для 6П14П это значение равно -6,5 В, для 6П3С равно -14 В. В схеме с фиксированным смещением можно отрегулировать нужное отрицательное напряжение с помощью переменного резистора или подбором номинала постоянного сопротивления. Таким образом, устанавливается ток покоя оконечного каскада.

Читайте так же:
Лампа с розетками над столешницей

При недостаточном напряжении смещения выходные лампы будут сильнее нагреваться и быстрее придут в негодность. От блока питания потребуется большая мощность, чем требуется.

При чрезмерно отрицательном напряжении смещения нелинейные искажения типа «ступенька» станут отчетливо слышны. Это также может повредить лампы тем самым образом, когда они используются в течение длительного времени без перерыва.

Особенно важен одинаковый ток покоя в лампах драйвера и оконечника. В противном случае на выходном трансформаторе будет дисбаланс по постоянному току. И усилитель не будет отдавать всю полезную мощность в нагрузку.

Ламповый усилитель 100 Вт на 6П3С

Возраст лампы и отклонения в смещении

Как известно, все лампы в процессе эксплуатации изнашиваются, начиная звучать блекло. Важным фактором в длительности эксплуатации является пропускная способность, или трансдуктивность. Она определяет силу тока, которую проводит лампа при заданном напряжении на управляющей сетке. Старые лампы со временем проводят меньший ток, нежели новые. Естественно, в процессе эксплуатации смещение может выходить из заданных значений, поскольку гитарные комбики подвержены также и механическим вибрациям.

Вот почему ламповые усилители нуждаются в небольшой профилактике хотя бы раз в 3-5 лет, и уж тем более после замены ламп.

Метод измерения.

Резисторы Rs малой величины (датчики тока) соединены последовательно с катодом ламп. Баланс каскада измеряется между точками А и В. Смещение измеряется путем усреднения напряжения А и В в точке С и сравнением результата с постоянным опорным напряжением VR. Опорное напряжение устанавливается в соответствии с током покоя выходных ламп: Vr=Io*Rs

Измерение напряжения смещения - www.radio.infoklad.ru

Смещение двухтактных каскадов может быть задано балансировкой плеч:

балансировка ламп выходного каскада - www.radio.infoklad.ru

или с помощью независимых регуляторов смещения для каждой лампы:

3-r

Так как автор предпочитает в своих конструкциях использовать первый вариант смещения, то в статье описывается применение измерителя именно для такого варианта включения. В конце будут даны рекомендации, как использовать измеритель в схеме с независимым смещением ламп.

Схема предназначена для усилителей с фиксированным смещением ламп выходного каскада. Катодное (автосмещение) как правило, не имеет цепей подстройки, а если и имеет, то номиналы их варьируются в широких пределах, что затрудняет согласование измерителя со схемой.

Резистор в катодной цепи вносит в схему небольшую отрицательную обратную связь, теоретически снижая усиление и искажения. На практике снижение коэффициента усиления минимальны при рекомендуемых значениях резисторов. Например, если мы вводим в катод лампы КТ-88 резистор 10 Ом при приведённом сопротивлении нагрузки 5кОм, то потеря усиления для нагрузки от 8 до 650 Ом составит всего 0,2дБ.

Если вас это беспокоит, то вы можете ввести в схему переключатель, который будет закорачивать этот резистор, когда измеритель не используется. Применение шунтирующего конденсатора здесь не очень удобно из-за малого сопротивления резистора. Кроме того, небольшие резисторы стоят в катодных цепях таких отлично звучащих аппаратов как Marantz 9, Heathkit W-7M, Luxman LX-33, Radford STA-25R, Harmon-Kardon Citation II. Каких-либо негативных последствий от введения этих резисторов замечено не было.

Содержание / Contents

  • 1 Зарождение идеи
  • 2 Пробный заезд
  • 3 Макетирование
  • 4 Выводы и решения по итогам макетирования
  • 5 Итоговая схема МУМ
  • 6 Конструкция и детали
  • 7 Наладка МУМ и регулировка в процессе подготовки к прослушиванию
  • 8 Опытная эксплуатация, анализ, выводы, доработка
  • 9 Испытания 9.1 Продолжительность испытаний
  • 9.2 Что я наблюдал?
Читайте так же:
Как устранить моргание светодиодной лампы с выключателем с подсветкой

Двухтактный усилитель на 6С33С по-сакумовски

При подготовке статьи редакция выяснила, что Mr. Susumu Sakuma скончался в госпитале в возрасте 76 лет 14 декабря 2021 года. Его наследие сохраняют и поддерживают энтузиасты со всего мира, входящие в группу DIRECT HEATING, оф. сайт .

Неоспоримый в принципе факт: Ламповые усилители и вообще все ламповое играет лучше транзисторного…

Эпитеты «теплый, уютный, ламповый…» относятся только к ламповым конструкциям, а лучшая похвала для транзисторного усилителя из уст продвинутых меломанов такая — «он звучит как ламповый аппарат…»

Вопрос возникает совершенно честный и оправданный – а почему, собственно транзисторные усилители должны звучать хуже ламповых? Ведь прогресс не стоит на месте, в руках у людей айфоны шестой модели, на руках умные часы, все это собрано на полупроводниковых чипах и прекрасно работает и т.д. Неужели прогресс не может то же самое сделать со звуком. По какой такой причине у всей электронной индустрии не получается добиться от транзисторов такого же натурального звучания, как от почти столетних ламп? И так ли это на самом деле, как утверждают многочисленные спецы от звука говоря, что лампы играют лучше… Может они ошибаются и есть транзисторные усилители, которые лучше ламповых .

Вопросов у человека, который любит музыку возникает масса, особенно у того, кто хоть немного технически подкован.

Я занимаюсь усилителями почти 30 лет, конечно не так, чтобы ежедневно паять и слушать разницу в их звучании, как многие продвинутые электронщики и «ламповики»… По роду деятельности и хобби приходится постоянно с такими людьми общаться, плюс много лет всевозможных экспериментов со звуком и сборки комплектов для воспроизведения музыки для совершенно разных «ушей» дают довольно интересные соображения и выводы.

Причин, по которым ламповый усилитель играет лучше транзисторного несколько:

Количество каскадов

В ламповом усилителе намного меньше каскадов (последовательно включенных звеньев) чем в транзисторном. В ламповом усилителе независимо от его архитектуры (бывают однотактные, двухтактные, мостовые конфигурации) как правило от 2-х до 4-х каскадов. Это значит, что линейный сигнал с CD проигрывателя или другого источника звука со стандартным напряжением 0,25 – 0,75 вольта усиливается по току и напряжению для достижения выходной мощности 10 – 100 Ватт всего 2 – 4 мя усилительными звеньями. В транзисторных усилителях такого практически никогда не бывает, количество каскадов усиления составляет от 10 до 20 звеньев…

На вопрос почему у транзисторного усилителя 20 каскадов, а у лампового с такой же выходной мощностью всего три я отвечу в подзаголовке «Количество и качество элементов в конструкции». Но в звукотехнике есть неоспоримый факт: количество каскадов транзисторного и лампового усилителя с примерно одинаковыми параметрами различается в 4 – 8 раз.

(На звучание влияние оказывает практически каждый элемент, который находится на пути звукового сигнала. В транзисторных усилителях в цепочке сигнала оказываются сотни элементов и эти «сотни» вносят свою лепту в звучание, тогда как у ламповых усилителей этих элементов на порядок меньше).

Температурный режим

Лампы изначально – высокотемпературные элементы, в них разогретый до тысяч градусов катод испускает электроны, которые летят к аноду через управляющую сетку. Лампы стабильно нагреты и не подвержены внешним колебаниям температуры, то есть они как бы находятся все время в одном высокотемпературном режиме. Плюс электроны в лампах испускаются металлическим катодом и летят либо к металлическому, либо к графитовому (угольному) аноду через металлическую (иногда – позолоченную) сетку.

Читайте так же:
Как уменьшить ток через лампу

Транзисторы в отличие от ламп работать при высоких температурах не могут. Размер кристалла транзистора очень мал по сравнению с размерами катода и анода лампы, и на этом кристалле должна выделяться примерно такая же мощность (при сравнимой выходной мощности лампового и транзисторного аппарата). Так как звуковой сигнал имеет импульсную природу, то за короткое время, когда нарастает импульс происходит мгновенный разогрев миниатюрного полупроводникового кристалла транзистора до высокой температуры. Эту температуру он просто физически не может отдать радиатору быстро из-за эффекта «тепловой инерции». Радиаторы охлаждения мощных транзисторных усилителей имеют большие размеры и массу, и за длительное время они обеспечивают охлаждение транзисторов до рабочих температур (максимум 50 — 60 градусов), но с мгновенным разогревом кристалла справиться не могут. Из-за локального и быстрого разогрева кристалла, параметры транзистора «плывут». Для приведения параметров «поплывшего» транзистора к норме включается обратная связь, которая — как и радиаторы имеет определенную инерцию. Обратная связь не успевает за быстрым импульсным сигналом и в первый момент просто отключена, каскад входит в ограничение и в эти милисекунды выдает сигнал максимально искаженным.

Соотношение тока и напряжения

Транзисторы в отличие от ламп изначально — низковольтные элементы и они в большинстве своем не выдерживают высоких напряжений. Происходит это из-за того, что расстояние между электродами транзистора в сотни раз меньше чем расстояние между катодом и анодом лампы. Из-за этого допустимое рабочее напряжение транзисторов намного меньше чем у лампы и как следствие – транзисторные схемы строятся с применением низковольтных источников питания. Например, 20-ти ваттный ламповый усилитель имеет источник питания и рабочее (анодное) напряжение 300 Вольт, а транзисторный с такой же выходной мощностью 30 вольт. По закону сохранения энергии в ламповом усилителе протекает ток ровно в 10 раз меньше чем в транзисторном.

Все элементы, которые участвуют в усилении сигнала лампового усилителя намного меньше нагружены током, чем элементы транзисторного, а значит площадь проводников лампового усилителя может быть намного меньше чем у транзисторного, емкость конденсаторов тоже на порядок меньше и т.д.

Кстати, именно из-за больших токов в транзисторном усилителе и малом рабочем напряжении питания его каскадов — массово применяются электролитические конденсаторы. А электролитические конденсаторы «электролиты» какими бы они не были качественными, от природы являются элементами нелинейными. В ламповых усилителях на пути сигнала электролитические конденсаторы практически не применяются, а в транзисторных они ставятся повсеместно. Емкость электролитических конденсаторов в транзисторном усилителе в сотни раз больше, чем в аналогичном по параметрам ламповом. Есть прямая закономерность, чем выше емкость электролитического конденсатора, там более заметный вклад звук (деградацию) он вносит.

Аудиофилами было замечено довольно интересное свойство у ламповых аппаратов – усилители звучат явно лучше если они работают с небольшими токами и высоким напряжением. Существуют специальные лампы, которые предназначены для работы при относительно небольшом анодном напряжении и большом токе, на пример: 6с-33с или 6-18с. Так вот, лампы такого типа хоть и применяются в отдельных моделях ламповых усилителей, но большого распространения не получили. Они так-же как и транзисторные требуют большого тока от источника питания и больших номиналов электролитических конденсаторов, в результате получаются неким гибридом между транзисторными и ламповыми агрегатами. Применяются такие лампы в основном для построения бестрансформаторных ламповых усилителей. Но фирмы ставя на отсутствие выходного трансформатора как основную цель получают кучу других проблем.

Читайте так же:
Как проверить провод с помощью лампочки

Обратная связь

Обратная связь (отрицательная) предназначена для коррекции нелинейности усилителей и получение от них объективно более высоких характеристик. То есть усилитель с обратной связью имеет шире полосу частот и меньшие нелинейные искажения, чем без оной. Но обратная связь улучшая объективные параметры усилителя имеет свои подводные камни. Она, как правило охватывает весь усилитель целиком, и корректирует его нелинейность тоже целиком, а искажения в каждом каскаде возникают сугубо свои и нелинеен каждый каскад по своему… Плюс отрицательная обратная связь имеет время реакции, которое тем длительнее, чем больше количество каскадов в усилителе. На быстрых пиках сигнала обратная связь не успевает срабатывать, что приводит к микросекундному входу усилителя в ограничение сигнала со 100% искажениями «клиппинг» которое в обычном режиме никак не проявляется, возникают так называемые «динамические искажения».

Из-за того, что транзисторные усилители изначально более нелинейны, чем ламповые и имеют по сравнении с ними большее количество каскадов, глубина обратной связи в них намного выше, чем в ламповых. Для транзисторного усилителя нормальной считается глубина обратной связи в 60 дБ, в то время как в ламповом она обычно не превышает 15 – 20 дБ. Чем больше глубина обратной связи, тем выше вмешательство в работу усилителя и тем больше уровень коррекции его первичной нелинейности. Аудиофилы довольно часто отключают обратную связь в своих ламповых аппаратах или делают ее минимальной. Да, при этом повышаются нелинейные искажения, сужается полоса частот и появляются высокие требования к качеству практически каждого элемента, входящего в ламповый усилитель. Но звук без обратной связи становится быстрым, атмосферным и воздушно легким. В транзисторном же аппарате отключить обратную связь практически невозможно, так как усилитель без нее не будет работать.

Количество и качество элементов в конструкции

Ламповый усилитель обычно собран из десятков элементов: ламп, резисторов, конденсаторов, и т.д. транзисторный же из сотен и тысяч. Здесь все просто – чем меньше элементов находятся на пути сигнала, тем меньшее они оказывают на этот сигнал влияние. Ламповые фирмы собирают усилители максимально тщательно подходя к подбору каждого входящего в него элемента. И этот подбор осуществляется не только и не столько по номиналам, а по влиянию этих элементов на звук. Например — в ламповые усилители стараются ставить углеродистые резисторы, так как они играют откровенно лучше металлокерамических, и металлоокисных хоть у них больше габариты, они подвержены температурной нестабильности и менее надежны.

Читайте так же:
Как спаять провод с лампой

В ламповых конструкциях повсеместно применяются бумажные и металлобумажные конденсаторы которые играют априори лучше электролитических, сотнями устанавливаемых в транзисторных аппаратах. В транзисторные усилители поставить бумажные конденсаторы просто невозможно, так как для них нужны номиналы конденсаторов в 10 – 1000 микрофарад. Электролитический конденсатор емкостью 100 микрофарад в транзисторном усилителе имеет размер фильтра от сигареты, а бумажный такого же номинала выглядит как пол литровая банка пива. И в транзисторный усилитель таких конденсаторов нужно 50 – 100 штук. Представьте теперь габариты и стоимость транзисторного усилителя с такими конденсаторами. В ламповый же усилитель из-за высокого напряжения питания и малого тока, достаточно поставить 1 – 2 таких конденсатора. В каскадах лампового усилителя протекают сверх малые (по сравнению с транзисторами) токи и для них требуются конденсаторы, имеющие в десятки раз меньшую емкость. Бумажные или пленочные конденсаторы, которые повсеместно устанавливаются в ламповых усилителях, как и лампы – элементы высоковольтные имеющие по сравнению с электролитическими того же размера — малую емкость. Они как бы созданы друг для друга.

Про разницу ламп и транзисторов как усилительных элементов. Здесь преимущества ламп не столь очевидны, скорее транзисторы как усилительные элементы работают не хуже, а даже лучше ламп. Они более надежны, у них выше КПД, они не разогреваются для опасных для людей температур. Но к звуку это имеет весьма посредственное отношение. На пути электронов в лампе встречаются только линейные материалы, это металл катода, сетки и анода. Анод иногда делают из графита, что — помня о том, что углеродистые (графитовые) резисторы играют лучше керамических и металлоокисных, дает вывод, что графитовый анод не хуже металлического. В транзисторах изначально применяют материал, который называется полупроводником: это редкоземельный германий, кремний или арсенид галлия. Полупроводник — это не металл, и этот комбинированный материал стоит на пути электронов, выходящих из эмиттера (катода) и направляющихся к коллектору (аноду). Полупроводник вносит в сигнал специфические, присущие только ему искажения, получившие жаргонное прозвище «транзисторными».

Многие радиолюбители делали эксперимент, строили практически одинаковые по архитектуре каскады, на транзисторе и лампе и сравнивали их звучание. Я ни от кого ни разу не слышал, чтобы транзисторный каскад звучал лучше.

Итог

Огромное количество фирм выпускает транзисторные и ламповые усилители. У транзисторных есть неоспоримое преимущество — они предельно надежны, повторяемы и менее материалозатратны на единицу выдаваемой колонкам мощности, а значит более выгодны в производстве. В основном из-за этих соображений мы видим засилье транзисторных усилителей в продаже и агрессивную рекламу по их продвижению. С ламповыми аппаратами сложнее — они имеют довольно специфический внешний вид, требуют аккуратного обращения и периодической (раз в 3 — 5 лет) замены ламп. Плюс работает всеобщее людское предубеждение против всего того, что было придумано и произведено в середине прошлого века. Но есть и факты: В самых лучших микрофонах студий звукозаписи уже более 50 лет применяются ламповые усилители, и 99 % продвинутых аудиофилов мира имеют в своих системах ламповые тракты. Особенно если в их системе присутствует проигрыватель виниловых дисков.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector