Mebelhoff.ru

Мебель HOFF
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

III. Основы электродинамики

III. Основы электродинамики

Как известно, химически чистая (дистиллированная) вода является плохим проводником. Однако при растворении в воде различных веществ (кислот, щелочей, солей и др.) раствор становится проводником, из-за распада молекул вещества на ионы. Это явление называется электролитической диссоциацией, а сам раствор электролитом, способным проводить ток.

В отличие от металлов и газов прохождение тока через электролит сопровождается химическими реакциями на электродах, что приводит к выделению на них химических элементов, входящих в состав электролита.

Первый закон Фарадея: масса вещества, выделяющегося на каком-либо из электродов, прямо пропорциональна заряду, прошедшему через электролит

Электрохимический эквивалент вещества — табличная величина.

Второй закон Фарадея:

Протекание тока в жидкостях сопровождается выделением теплоты. При этом выполняется закон Джоуля-Ленца.

Условия существования электрического тока

Что такое электрический ток мы разобрались, теперь давайте поговорим о том, как обеспечить его протекание. Для протекания электрического тока необходимо выполнение двух условий:

  1. Наличие свободных носителей заряда.
  2. Электрическое поле.

Первое условие существования и протекания электричества зависит от вещества, в котором протекает (или не протекает) ток, а также его состояния. Второе условие также выполнимо: для существования электрического поля обязательно наличие разных потенциалов, между которыми находится среда, в которой будут протекать носители заряда.

Источник электричества

Напомним: Напряжение, ЭДС – это разность потенциалов. Отсюда следует, что для выполнения условий существования тока – наличия электрического поля и электрического тока, нужно напряжение. Это могут быть обкладки заряженного конденсатора, гальванический элемент, ЭДС возникшее под действием магнитного поля (генератор).

Как он возникает, мы разобрались, давайте поговорим о том, куда он направлен. Ток, в основном, в привычном для нас использовании, движется в проводниках (электропроводка в квартире, лампочки накаливания) или в полупроводниках (светодиоды, процессор вашего смартфона и другая электроника), реже в газах (люминесцентные лампы).

Читайте так же:
Замена лампочек выключателя 2114

Так вот основными носителями заряда в большинстве случаев являются электроны, они движутся от минуса (точки с отрицательным потенциалом) к плюсу (точке с положительным потенциалом, подробнее об этом вы узнаете ниже).

Движение электронов

Но интересен тот факт, что за направление движения тока было принято движение положительных зарядов – от плюса к минусу. Хотя фактически всё происходит наоборот. Дело в том, что решение о направлении тока было принято до изучения его природы, а также до того, как было определено за счет чего протекает и существует ток.

Вопросы и задачи

  1. Иногда перегоревшую лампочку удается заставить снова светиться, встряхивая ее. Почему «ожившая» лампочка светит ярче?
  2. Отчего концы перегоревшего волоска электрического предохранителя обычно оканчиваются шариками?
  3. В момент включения лампочки сила тока в цепи отличается от той, которая имеет место, когда лампочка начинает светиться. Как изменяется ток в цепи с лампочкой, имеющей металлическую нить накала, и в цепи с лампочкой с угольной нитью?
  4. Две лампочки одинаковой мощности, рассчитанные на одно и то же напряжение, включены последовательно в сеть с этим напряжением. Одна из лампочек имеет металлическую нить накала, другая — угольную. Какая из них накалена сильнее?
  5. Почему при расчете увеличения сопротивления металлического проводника с ростом температуры не учитывают удлинение проводника?
  6. Лампу, рассчитанную на напряжение 220 В, включили в сеть с напряжением 127 В. Считая, что мощность пропорциональна квадрату напряжения, можно сделать вывод, что она будет втрое меньше номинальной. Так ли это?
  7. Когда величина тока в цепи будет больше: если вся никелиновая спираль, включенная в электрическую цепь, находится в воде или если часть ее вынута из воды?
  8. По классической электронной теории, сопротивление металлов прямо пропорционально их абсолютной температуре. Какое явление противоречит этому выводу?
  9. Почему при дуговом разряде сильно разогревается именно катод, хотя заряженные частицы бомбардируют оба электрода?
  10. Что произойдет с горящей электрической дугой, если сильно охладить отрицательный электрод? А положительный?
  11. Электрическая дуга низкого напряжения создана между угольным электродом и большой металлической плитой и питается от трансформатора. Каким будет ток в цепи: переменным или выпрямленным?
  12. Можно ли получить электронный луч в трубке, из которой полностью удален газ?
  13. Пока стеклянная палочка АВ, включенная в изображенную на рисунке цепь, остается холодной, ток цепи ничтожно мал и лампочка Л не горит. При нагревании палочки нить лампочки начинает светиться. Если теперь закоротить лампочку и убрать горелку, палочка «сама» раскаляется до яркого свечения. Как это объяснить?
Читайте так же:
Как измениться ток после включение лампы

Img Kvant K-2004-01-001.jpg

Способы определения параметров электрической цепи

Существует два основных варианта как определить силу электрического тока в проводнике, а также остальные характеристики – это косвенный способ вычислений и прямой метод измерения с помощью соответствующих приборов.

как определите силу электрического тока в проводнике

Прямой способ определения силы электрического тока

Данный вариант основан на использовании контрольно-измерительного устройства, которое называется амперметр. Свое наименование данный прибор получил от ампера – единицы силы тока принятой в международной системе СИ. В отличие от вольтметра, который позволяет определить разность потенциалов (напряжение), амперметр применяется довольно редко. В домашних и большинстве производственных условий напряжение в сети известно, а зная потребляемую мощность электрических устройств, не составляет особого труда определить остальные параметры, взаимосвязь которых будет показана ниже.

каким прибором измеряют силу электрического тока

Амперметр.

Сложнее ситуация, когда электрическая цепь имеет свои особенности, например, электропроводка автомобиля, которая включает в себя огромное количество различных устройств. Нередко возникает вопрос как определить силу тока в электрической лампочке или другом элементе бортовой системы, чтобы это не отразилось на его безопасной эксплуатации.

Особенностью таких схем является неоднородность параметров электрической цепи на отдельных участках. Вот здесь и пригодится амперметр. Измерение силы тока в электрической лампочке автомобиля представляет собой простую операцию – достаточно в месте ее установки последовательно включить амперметр и считать показания на шкале. Еще одним прибором каким измеряют силу электрического тока является многофункциональный тестер (фото ниже).

каким прибором измеряют силу электрического тока

Мультиметр.

С его помощью можно получить данные о напряжении или сопротивлении на отдельных участках любой цепи.

Косвенный метод определения силы электрического тока в проводнике

Данный способ определения силы тока основан на определении силы тока через измерение остальных параметров электрической цепи. Для этого необходимо воспользоваться законом Ома, который описывает зависимость основных параметров относительно друг друга. Данный закон устанавливает прямую зависимость силы тока (I) от разности потенциалов (U), а также обратную связь от сопротивления (R) проводника на определенном участке цепи, что отображается формулой I=U/R.

Читайте так же:
Как уменьшить ток через лампу

как определите силу тока в электрической лампочке

Таким образом, если возникает такая проблема, как определение силы электрического тока в проводнике при отсутствии амперметра, необходимо воспользоваться вольтметром и омметром. Как правило, данные устройства объединены в едином корпусе, но могут представлять и самостоятельные приборы. Измерив требуемые параметры и подставив их в вышеприведенную формулу получаем искомую величину силы тока.

Необходимо отметить что использование многофункционального тестера значительно облегчает нахождение всех параметров электрической цепи. Единственное на что требуется обратить внимание при определении силы тока в любом элементе электрической схемы с помощью тестера или амперметра – это выбор правильного диапазона измерений. При отсутствии предварительных данных, измерения необходимо начинать при выставлении максимальных величин и постепенно их уменьшать до отображения достоверных данных.

Зависимость сопротивления от температуры

Опыт показывает, что при нагревании металлического проводника его сопротивление увеличивается. Как это объяснить?

Причина проста: с повышением температуры тепловые колебания ионов кристаллической решётки становятся более интенсивными, так что число соударений свободных электронов с ионами возрастает. Чем активнее тепловое движение решётки, тем труднее электронам пробираться сквозь промежутки между ионами (Представьте себе вращающуюся проходную дверь. В каком случае труднее проскочить через неё: когда она вращается медленно или быстро? :-)). Скорость упорядоченного движения электронов уменьшается, поэтому уменьшается и сила тока (при неизменном напряжении). Это и означает увеличение сопротивления.

Как опять-таки показывает опыт, зависимость сопротивления металлического проводника от температуры с хорошей точностью является линейной:

Здесь — сопротивление проводника при . График зависимости (1) является прямой линией (рис. 4 ).

Множитель называется температурным коэффициентом сопротивления. Его значения для различных металлов и сплавов можно найти в таблицах.

Длина проводника и его площадь поперечного сечения при изменении температуры меняются несущественно. Выразим и через удельное сопротивление:

Читайте так же:
Коммутируемый ток люминесцентных ламп 10 ax

и подставим эти формулы в (1) . Получим аналогичную зависимость удельного сопротивления от температуры:

Коэффициент весьма мал (для меди, например, ), так что температурной зависимостью сопротивления металла часто можно пренебречь. Однако в ряде случаев считаться с ней приходиться. Например, вольфрамовая спираль электрической лампочки раскаляется до такой степени, что её вольт-амперная характеристика оказывается существенно нелинейной.

Рис. 5. Вольт-амперная характеристика лампочки

Так, на рис. 5 приведена вольт-амперная характеристика автомобильной лампочки. Если бы лампочка представляла собой идеальный резистор, её вольт-амперная характеристика была прямой линией в соответствии с законом Ома. Эта прямая изображена синим пунктиром.

Однако по мере роста напряжения, приложенного к лампочке, график отклоняется от этой прямой всё сильнее и сильнее. Почему? Дело в том, что с увеличением напряжения ток через лампочку возрастает и больше разогревает спираль; сопротивление спирали поэтому также увеличивается. Следовательно, сила тока хотя и продолжит возрастать, но будет иметь всё меньшее и меньшее значение по сравнению с тем, которое предписывается «пунктирной» линейной зависимостью тока от напряжения.

Формулы

Собственный магнитный поток контура (Ф) связан прямо пропорциональной зависимостью с индуктивностью (L) этого контура и величиной тока в нём (i). Данная зависимость выражается формулой: Ф = L×i. Коэффициент пропорциональности L принято называть коэффициентом самоиндукции или же просто индуктивностью контура.

При этом индуктивность контура пребывает в зависимости от его геометрии, площади плоскости ограниченной витком и магнитной проницаемости окружающей среды. Но этот коэффициент не зависит от силы тока в контуре. Если же форма, линейные размеры и магнитная проницаемость не изменяются, то для определения величины индуктивной ЭДС применяется формула:

ЭДС самоиндукции

где Eсамоинд. – ЭДС самоиндукции, Δi – изменение силы тока за время Δt.

Читайте так же:
Лампа накаливания регулировка по току

Плюсы и минусы от нагрева электрическим током

  • Плюсы. Нагревание проводников электрическим током находит свое применение в различных полезных приборах и устройствах: электроплитах, чайниках, кофеварках, кипятильниках, фенах, утюгах, обогревателях.
  • Минусы. Очень часто инженерам-электронщикам приходится бороться с этим эффектом для того, чтобы, например, обеспечить работоспособность электронных плат, которые напичканы огромным количеством электронных деталей, микросхем и т.д. Все эти элементы греются в соответствие с законом Джоуля-Ленца. И если не предпринять меры для принудительного охлаждения с помощью металлических радиаторов или вентиляторов (кулеров), то платы быстро выйдут из строя от перегрева.

Часто для быстрого соединения проводов многие пользуются способом “скрутки”. Это приводит к значительному увеличению сопротивления, а следовательно, место “скрутки” будет греться сильнее, чем остальная часть проводки. Поэтому скрутка проводов часто бывает причиной пожаров в домах и квартирах. Для улучшения контакта требуется хорошо пропаять это место.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector