Mebelhoff.ru

Мебель HOFF
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Стабилизатор тока на lM317 для светодиодов

Большинству знакомо понятие стабилизатора напряжения, то есть устройства, которое обеспечивает выдачу стабильного напряжения, вне зависимости от условий: мощности нагрузки, температуры, величины входного напряжения. Для питания источников освещения на светодиодах необходимо обеспечить подачу стабильного тока через диод. Это связано с тем, что полупроводниковые элементы обладают нелинейной зависимостью тока через p-n переход. Изменение внешних условий влияет на величину протекающего тока, который может выйти за допустимые пределы. Поэтому понятие стабилизатора напряжения для светодиодов не имеет смысла. Особенно важно обеспечить стабилизацию тока для светодиодов в авто, где напряжение не отличается стабильностью, а диапазон изменения температуры очень широк.

Именно перечисленные условия требуют применения источника тока. В простейшем случае можно довольствоваться простым ограничением максимального значения при помощи ограничительного резистора, но это не обеспечивает стабильной яркости и неэффективно с энергетической точки зрения.

На заметку. Более рациональным будет питание стабилизированным значением с использованием схемотехнических решений источников тока на малогабаритных электронных компонентах.

Datasheet по lm317, lm350, lm338

Прежде чем перейти непосредственно к схемам, рассмотрим особенности и технические характеристики вышеприведенных линейных интегральных стабилизаторов (ЛИС).

* – зависит от производителя ИМ.

Во всех трех микросхемах присутствует встроенная защита от перегрева, перегрузки и возможного короткого замыкания.

Lm317, самая распространенная ИМ, имеет полный отечественный аналог — КР142ЕН12А.

варианты корпуса

Выпускаются интегральные стабилизаторы (ИС) в монолитном корпусе нескольких вариантов, самым распространенным является TO-220. Микросхема имеет три вывода:

  1. ADJUST. Вывод для задания (регулировки) выходного напряжения. В режиме стабилизации тока соединяется с плюсом выходного контакта.
  2. OUTPUT. Вывод с низким внутренним сопротивлением для формирования выходного напряжения.
  3. INPUT. Вывод для подачи напряжения питания.

Стабилизатор на LM317

В качестве стабилизатора тока для светодиодов можно использовать не только специализированные микросхемы. Большой популярностью у радиолюбителей пользуется схема LM317.

LM317 представляет собой классический линейный стабилизатор напряжения имеющий множество аналогов. В нашей стране эта микросхема известна как КР142ЕН12А. Типовая схема включения LM317 в качестве стабилизатора напряжения показана на рисунке.

схема стабилизатора для светодиодов на микросхеме lm317

Для превращения этой схемы в стабилизатор тока достаточно исключить из схемы резистор R1. Включение LM317 в качестве линейного стабилизатора тока выглядит следующим образом.

линейный стабилизатор тока на микросхеме LM317

Выполнить расчет этого стабилизатора довольно просто. Достаточно вычислить номинал резистора R1, подставив значение тока в следующую формулу:

Мощность, рассеиваемая на резисторе равна:

Нюансы расчета стабилизатора тока

Расчет стабилизатора производится на основании напряжения стабилизации U и тока (среднего) I. К примеру, напряжение входного делителя составляет 25 В, на выходе нужно получить 9 В. Вычисления предусматривают:

  1. Подбор по справочнику стабилитрона. Ориентируются на напряжение стабилизации: Д814В.
  2. Поиск среднего тока I по таблице. Он равен 5 мА.
  3. Вычисление подающего напряжения как разности стабильного напряжения входа и выхода: UR1 = Uвx — Uвых, или 25-9=16 В.
  4. Деление полученного значение по закону Ома на ток стабилизации по формуле R1 = UR1 / Iст, или 16/0,005=3200 Ом, или 3,2 кОм. Номинал элемента будет 3,3 кОм.
  5. Вычисление максимальной мощности по формуле РR1 = UR1 * Iст, или 16х0,005=0,08.

Через резистор проходит ток стабилитрона и выходной, поэтому его мощность должна быть в 2 раза больше (0,16 кВт). На основании таблицы данному номиналу соответствует 0,25 кВт.

Самостоятельная сборка стабилизатора для светодиодных устройств возможна только при знании схемы. Начинающим мастерам рекомендовано использовать простые алгоритмы. Рассчитать элемент по мощности можно на основании формул из школьного курса физики.

Линейный драйвер на LM317

Описание и Характеристики

По-сути, LM317 представляет собой стабилизатор напряжения, который можно включить и как стабилизатор тока. Схема драйвера на этой микросхеме проста, как угол дома: вам потребуется сама микросхема и… один опорный резистор – и все! Все детали можно спаять навесным монтажом, прикрутив микросхему прямо к радиатору. Благодаря простоте и доступности при стоимости микросхемы около 0,2 у.е., эта микросхема многие годы пользуется огромной популярностью среди радиолюбителей. Один из аналогов микросхемы – популярная отечественная «КРЕН-ка» КР142ЕН12.

Читайте так же:
Выключатели с подсветкой когда можно использовать

В зависимости от исполнения LM317 может иметь добавочный индекс, характеризующий корпус микросхемы. Наиболее распространенный варинат – LM317T в корпусе TO-220 под винт для крепления непосредственно к радиатору охлаждения. LM317D2T в корпусе D 2 PAK рассчитана для монтажа на плате при небольшой мощности нагрузки.

Принцип регулирования напряжения/тока линейного стабилизатора состоит в том, что стабилизатор изменяет сопротивление p-n перехода выходного мощного транзистора (по сути, последовательного резистора в цепи) и тем самым адаптивно отсекает “лишнее” напряжение или гасит на себе “лишний” ток. Благодаря этому к питающему напряжению не домешиваются какие-либо высокочастотные помехи, поскольку их нет в принципе. Однако, у линейных стабилизаторов есть и серьезный недостаток. Как известно, при прохождении тока через любой резистор, на нем рассеивается мощность в виде тепла. Поэтому у линейного стабилизатора на LM317 склонность к сильному нагреву и, как следствие, достаточно низкий КПД.

Макс. выходной ток, А1,5
Напряжение питания, В4,2 … 40
Напряжение на выходе, В1,2 … 37
Температура, °C0…125

Схемы и примеры включения

Схема подключения LM317 для стабилизатора тока предельна проста – просто подключить опорный резистор заданного номинала между ножками выхода и регуляторным входом. Значения сопротивления и мощности опорного резистора можно расчитать по упрощеной формуле:

R = 1,25 / Iout P = 1,25 ⋅ Iout

Полученные значения округляем до ближайшего значения номиналов сопротивления и до ближайшего бо́льшего значения мощности, например для подключения полуваттных SMD 5730 получаем резистор на 8,2 Ом, мощностью 0,25 Вт, а для светодиодов на 1 Вт (300 мА), соответственно – 4,3 Ом и 0,5 Вт. Может оказаться, что резисторов требуемого номинала нет в наличии, тогда можно скомбинировать составной резистор из нескольких одинаковых, соединив из параллельно. В таком случае суммарное сопротивление такого составного резистора будет равно сопротивлению каждого резистора поделенного на их кол-во, а мощность будет равно мощности каждого резистора помноженного на их кол-во. Для простоты расчетов в Сети есть достаточно много он-лайн калькуляторов, например, такой.

Для работы стабилизатора тока на LM317 происходит падение напряжения не менее 3 В – это надо учитывать при подборе входного напряжения и количества последовательно соединенных светодиодов. Например, рабочее напряжение для SMD 5730 – 3,3…3,4 В. Следовательно, если подключать по 3 светодиода в группе, то входное напряжение должно быть от 13 В (рабочее напряжение исправной бортовой сети автомобиля – 14 В).

При всей свое простоте линейный стабилизатор тока на LM317 отличается низким КПД и потребностью в дополнительным охлаждением.

Источник стабильного тока для светодиодов

Чертежи авиамоделей

Подписываемся на VK

Ежедневные новости, видео и приколы.

Читайте так же:
Выключатель ближнего света пассат б3

YouTube канал


Подбор двигателя

Меню сайта

Магазин

TOP статьи

Оборудование

Плосколеты

Создание авиамоделей

  • Фотоинструкции
  • Видеоинструкции
  • Обзоры изготовления

RC Магазины

Home Технологии Оборудование Истоичник питания для БАНО на мощных светодиодах. Часть 2

  • Дрон для новичка — Eachine Novice-II V2.0
  • Как сделать самолет УТ-2 своими руками
  • Бюджетный джип внедорожник — JY66 1/14 2.4Ghz 4WD
  • Большие Гуси 2021
  • Обзор радиоуправляемого джипа WPL C24 масштаба 1/16
  • Самодельный токарный станок для домашней мастерской
  • DW HOBBY Rainbow — летающее крыло из ЕПП
  • Полукопия FMS P-47 Thunderbolt
  • Двухметровый зальник По-2
  • Делаем радиоуправляемый самолет JA 37 Viggen своими руками

Vertigo 800mm Wingspan 3D Aerobatic EPP F3P RC Airplane KITRadiolink M8N GPS Module UBX-M8030 for Naze32 APM CC3D F3 Naze32 Flip32 PX4 Flight Controller for RC DroneiRangeX IRX4 2.4G CC2500 NRF24L01 A7105 CYRF6936 4 IN 1 Multiprotocol STM32 TX Module With CaseiRangeX iRX6 Multiprotocol TX Module for Flysky FS-i6 i6x TransmitterTKKJ H105 1/16 2.4G High Speed RC Racing Boat With Water Cooling System ToysHeadplay SE V2 5.8G 40CH 1200*600 FPV Goggles Video Glasses Headset With DVR HDMI For RC DroneMini Servo Tester 4.8V To 6.0VISDT D2 200W 24A AC Dual Channel Output Smart Battery Balance Charger

Истоичник питания для БАНО на мощных светодиодах. Часть 2
Технологии моделизма — Ремонт и доработка оборудования
Автор: Александр

Пару недель назад я писал статью про свои попытки запитать пару мощных светодиодов для БАНО. И хотя решение получилось вполне приемлемым и решало поставленую задачу, оно оказалось концептуально неправильным. А значит я написал еще одну статью в море других таких же статей с неверными выводами. Я не люблю кидать дело на полдороги, поэтому я продолжил копать в поисках правильного решения.

бано для радиоуправляемой авиамодели

Напомню вкратце содержание предыдущих серий.

Задача: запитать 2 мощных светодиода (1 Вт, макс. ток 350мА) от батареи 3S

Решения 1, 2 и 3 были основаны на использовании линейных стабилизаторов и токоограничивающих резисторов. Минус такого подхода — низкий КПД и, как следствие, сильный нагрев элементов.

Решения 4 и 5 использовали импульсный стабилизатор, который производил ровно столько электричества сколько нужно. Итог — ничего не греется.

Так что же, собственно, неправильно? А неправильно то, что я использовал стабилизатор напряжения а не тока. Дело в том, что параметры светодиодов (такие как внутреннее сопротивление, и, как следствие, падающее на нем напряжение) сильно варьируются даже в пределах одной партии. Более того они плавают во время работы, например, от температурного нагрева.

Представьте, что мы настроили несколько последовательно соединенных резисторов на некоторое стабильное напряжение. Через некоторое время диод нагревается и его сопротивление падает. Исходя из закона Ома ток растет. Как следствие уже перегреваются все диоды в цепочке (повышенный ток через них тоже протекает), у них сопротивление тоже уменьшается и ток растет еще больше. Таким образом ток может легко выйти за пределы допустимого и светодиоды сгорят. Ну или не сгорят, но срок их службы сильно уменьшится. А источник тем временем честно держит заданное напряжение.

Такой подход отлично работает с лампочкам накаливания, но недопустим для светодиодов. Для них единственным параметром за который нужно бороться это ток. Если держать его в допустимых пределах, то диод не будет перегреваться, а срок службы многократно возрастет. И неважно, что другие параметры плавают. Стабилизатор тока для светодиодов еще часто называют драйвером.

Чем же отличается стабилизатор напряжения от стабилизатора тока? Да, по сути, почти ничем (если мы говорим об импульсных стабилизаторах). Только первый стабилизирует напряжение на нагрузке, а второй — на маленьком резисторе включенном последовательно с нагрузкой. Поскольку сопротивление постоянно, то стабильное напряжение означает стабильный ток.

В остальном эти источники работают одинаково: в схеме присуствует элемент, который накапливает энергию (катушка индуктивности). Источник короткими импульсами заряжает катушку, а когда она заряжена до необходимого уровня источник отключается.

Поскольку у меня валяласть пара микросхем MC34063, то я сначала искал стабилизаторы именно на этой микросхеме. Оказалось ее можно включить в режим стабилизации тока, но нужно собирать схему из двух десятков деталей.

Наткнулся на крутую статью как можно нестандартно включить эту микросхему с минумумом деталей и с целой кучей других плюшек. Но, если честно, прочитав статью 2 раза я так ее и ниасилил. Судя по всему такое включение возможно, но оно сильно зависит от производителя микросхемы. Нужно хорошенько посидеть за наладкой, подбирая номиналы деталей из довольно большого диапазона.

Но это все равно не совсем то что нужно мне. Дело в том, что после того как я разберусь с подключением постоянно работающих диодов я возьмусть за мигающие. А значит мне будет нужен способ включать и выключать источник. К сожалению у схем на MC34063 эта возможность не заложена штатно (стабилизатор напряжения, все таки). Придется городить еще дополнительную обвязку на мощных транзисторах, а это деньги и вес. Хотя в вышеупомянутой статье это тоже решалось.

Копая дальше я понял, что нечего изобретать велосипед, если можно просто взять микросхему заточенную под стабилизацию тока. Более того — под стабилизацию тока для светодиодов. Выбор пал на микросхему ZXLD1350. Она рассчитана как раз на ток 350мА и работу с одноваттными светодиодами.

Схема из даташита

alt

Поскольку эта микросхема работает на бОльшей частоте, чем предыдущая, то размеры деталей (в частности катушки) будут меньше. В итоге платка получилась всего размером 9х19мм. Сама микросхема это маленький черный прямоугольничек между диодом и катушкой.

Слева плата на MC34063 (весом 6г), справа на ZXLD1350 (2г)

Почти все детали как на схеме. Диод я поставил SS14, конденсатор под рукой был на 10мкФ. Схема заводится сразу, наладки не требует.

Цена вопроса в пределах $1.5-$2

Со стандартными номиналами схема честно держит ток 300мА. Почему 300мА, если светодиоды рассчитаны на 350мА? Ответ кроется в том же даташите. Дело в том, что за время одного импульса ток меняется ±15% от номинального. 300мА+15%=348мА – как раз на границе допустимого тока. К тому же светодиоды у меня жутко китайские, лучше не рисковать. Эти 15% по светимости на глаз не заметны.

Ну а если уж очень хочется рискнуть, то ток задается резистором по формуле Iout= 0.1V/R. Т.е. если взять резистор, скажем, не 0.33Ом, а 0.3Ом, то средний ток увеличится до 333мА, но пиковый будет уже 383мА.

Приятно то, что сама схема вместе со светодиодами потребляет только 170мА при питании от 3S.

Токоограничивающий резистор теперь не нужен – источник дает ровно столько вольт и милиампер сколько нужно (точнее источник регулирует напряжение так, что бы через светодиоды протекал заданый ток). Это дало возможность укоротить радиатор.

Прикидки по весу

Итого на одну модель получается 8г

На этом плюшки не заканчиваются

У микросхемы есть вход ADJ, через который можно включать и выключать светодиод. Более того можно даже плавно регулировать его светимость подавая постоянное напряжение в пределах 0.3-1.25В или же ШИМ сигнал с амплитудой 1.25В.

Если одноваттные светодиоды слишком тусклые, то можно взять микросхему ZXLD1360. Схема включения, цоколевка и даже размер микрухи такой же. Разница только в выходном токе, который у этой микросхемы до 1А.

Итак, что же мы имеем в сравнении со схемой на MC34063. Плюсы налицо: стабильный ток, меньший размер и вес, чуть проще схема. Из минусов можно сказать разве что чуть меньшую распространенность ZXLD1350.

Стабилизатор напряжения штука в хозяйстве, безусловно, полезная. Но светодиодам нужено не напряжение, а стабильный ток. Нечего изобретать велосипед – китайцы уже все изобрели. Есть специально заточенные микросхемы которые обеспечивают стабильный ток для светодиодов.

Я предпочитаю копийные БАНО на одинарных светодиодах, но вы можете обвешать свою модель и светодиодными лентами. Просто помните, что в светодиодных лентах присутствуют токоограничивающие резисторы, которые будут превращать ваши миллиамперчасы в тепло. Наконец, как одиночные светодиоды так и ленты требуют стабильного тока. Поэтому есть смысл задуматься об источнике стабильного тока.

Как всегда можно не паять, а купить готовый драйвер на нужный ток. На ебее их валом. Можно найти меньше бакса за штуку .

Импульсный драйвер на PT4115

Описание и Характеристики

Стабилизатор тока на базе PT4115 относится к “ключевым” или импульсным устройствам, т.е. регулировка величины тока через подключенную нагрузку осуществляется не за счет ограничения тока на полупроводниках, как это делается в линейных стабилизаторах LM317, а благодаря высокочастотному открытию/закрытию выходного ключа.

В импульносном стабилизаторе PT4115 постоянный ток преобразуется в импульсный с высокой частотой, а затем снова сглаживается до постоянного. Вот как раз, в момент формирования импульсов, и происходит регулировка величины тока за счет уменьшения или увеличения длительности самого импульса или пауз между ними (скважности). Поскольку импульсный регулятор ничего не ограничивает, а просто замыкает/размыкает цепь, то падения мощности не происходит, а значит импульсный регулятор мало греется и имеет высокий КПД (до 97%!). Поэтому, импульсный драйвер может иметь очень маленькие размеры и не требует громоздкого охлаждения.

Для работы стабилизатора тока на PT4115 требуется минимум деталей. Кроме того, PT4115 может работать как диммер : для этого подается на специальный вход постоянное напряжение в диапазоне 0,3…2,5 В или сигнал ШИМ.

Схемы и примеры включения

Схемы и примеры включения стабилизатора тока на PT4115

Схема источника стабильного тока с использованием PT4115 стандартна и использует минимум обвязки. Кроме самой микросхемы потребуется сглаживающий конденсатор, задающий низкоомный резистор (скорее всего составной), диод Шоттки да катушка индуктивности (дроссель). При подключении к источнику переменного напряжения потребуется еще диодный мост. Все детали достаточно миниатюрны и позволяю собрать плату размером с пять копеек.

Параметры опорного резистора рассчитываем по упрощенной формуле:

R = 0,1 / I out

Для одноваттных светодиодов (300мА) получаем резистор на 0,33 Ом. Для получения такого резистора можно “бутербродом” спаять параллельно 3 SMD резистора на 1 Ом.

Идуктивность дросселя определяется в зависимочсти от тока нагрузки по таблице:

Всех Вам благ, и ровных дорог =)

Зачастую нуждается в дополнительном, так сказать, обеспечении, например, для мощных светодиодов необходим драйвер. Его можно собрать самому.

Хочу представить сегодня на вас суд простейший драйвер для 0.5-5Вт-х светодиодов на базе микросхемы LM317.

Как известно, для питания мощных светодиодов нужен стабилизатор тока (или, как говорят, светодиод питается током, а не напряжением), иначе светодиод прослужит не очень долго и сгорит. Для этих целей служит LED-драйвер, предназначенный для стабилизации тока и других функций (регулировка яркости и т.п.). Существуют специализированные микросхемы, да и в интернете полно схем драйверов.

Однако можно собрать простейший LED драйвер на популярной микросхеме LM317.

Эта микросхема универсальна, на ней можно строить как всевозможные линейные стабилизаторы напряжений, так и ограничители тока, зарядные устройства… Но остановимся на ограничителе тока. Микросхема ограничивает ток, а напряжение диод берет столько, сколько ему нужно. Схема очень проста, состоит всего из двух деталей: самой микросхемы и задающего ток резистора.


Или вот такой более понятный рисунок.

Минимальное напряжение должно быть минимум на 2-4В больше чем напряжение питания кристалла светодиода. Схема позволяет ограничивать ток от 10мА до 1,5А с максимальным входным напряжением 35В. При большом перепаде напряжений и(или) больших токах микросхему нужно посадить на радиатор. Если же требуются большие входные напряжения или ток, или нужно уменьшить потери, или тепловыделение то уже стоит использовать импульсный драйвер.

Резистор рассчитывается по следующей формуле:
R1=1.25В/Iout, где ток взят в Амперах, а сопротивление в Омах.
Например, имеем светодиод на ток 700 мА, R=1.25/0.7A=1.785 или 1.8 Ом.


Небольшая рассчитанная таблица.

Учтите, что максимальный ток для LM317 составляет полтора Ампера. Также не забывайте использовать радиатор для нее.
Конечно сама схема имеет низкий КПД, но на это можно не обращать внимание.

От себя добавлю, что имея в руках БП (блок питания) от компьютера допустим и пару-тройку таких микросхем да резисторов, можно собрать неплохое светило на тех же Cree или Semileds. На одну микросхему можно подцепить до 10 диодов.

На данный момент собран мною по такой схеме драйвер для фонаря на трех Cree XM-L t6 в котором источником питания служит четыре аккумулятора US18650GR (3,7v). Ток на диодах 1250мА. Это конечно меньше родного драйвера (там аж 3А было), но все равно отлично светит.
Также замечу, что у БП от ПК есть две линии +12 и -12, то есть можно взять 24в. А это уже при сопротивлении 1,8 Ом можно подключить 6 шт. диодов на одну линию. То есть нужно 4 микросхемы. Но есть одно но: на линии -12в ток всего 0,3А, то есть не пойдет (это я только что глянул на один из своих БП).

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector