Mebelhoff.ru

Мебель HOFF
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Поражение электрическим током

Поражение электрическим током

В 2020 году сложно представить жизнь без электричества. В сегодняшнем современном обществе оно обеспечивает все в нашей жизни. Каждый день мы полагаемся на него на рабочем месте, во время путешествий и, конечно же, дома. Хотя большинство взаимодействий с электричеством происходит без происшествий, поражение электрическим током может произойти в любых условиях, включая промышленные и строительные площадки, производственные предприятия или даже собственный дом.

Когда кто-то пострадал от поражения электрическим током, важно знать, какие меры следует предпринять, чтобы помочь пострадавшему. К тому же, нужно знать о потенциальных рисках, связанных с оказанием помощи пострадавшему от поражения электрическим током, и о том, как помочь, не подвергая себя опасности.

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Действия электрического тока. Направление электрического тока»

На прошлых уроках мы с вами говорили о том, что электрический ток представляет собой упорядоченное движение свободных носителей зарядов.

Как вы знаете, увидеть эти заряды невозможно, так как они очень малы. Но существуют явления, которые убеждают нас в их реальности. Всё дело в том, что прохождение электрических зарядов в среде сопровождается несколькими очень важными физическими явлениями, которые с большой пользой применяются в практической жизни. Такие явления принято называть действиями электрического тока. К числу самых очевидных принадлежат: тепловое, химическое и магнитное действия тока.

Рассмотрим каждое из них более подробно. И начнём с теплового действия тока. Оно проявляется в том, что среда, в которой протекает ток, нагревается. Именно это действие человек давно и успешно использует в электрических утюгах, электрочайниках и кофеварках, в обычных электролампах с металлической спиралью.

Поднесите руку к горящей электрической лампе, и вы сразу почувствуете около неё тепло, то есть нагретая электрическим током лампа излучает энергию.

А почему вообще светится электрическая лампа?

Дело в том, что тонкая вольфрамовая проволочка внутри лампы, которую хорошо видно через прозрачное стекло, нагревается при прохождении по ней электрического тока, раскаляется и начинает светиться.

Читайте так же:
Как спрятать провод от люстры

Можно проделать простой опыт, демонстрирующий подобное тепловое действие тока. Присоединим к полюсам источника тока тонкую проволоку, лучше железную или никелиновую. Замкнув ключ, будем наблюдать, как эта проволока сначала немного провиснет (она нагрелась и удлинилась), а затем начнёт накаливаться и краснеть.

Тепловое действие тока проявляется не только, когда он течёт в твёрдых проводниках, но и в газах (вспомните молнию), и в жидкостях, в чём можно убедиться на простом опыте. Опустим в стакан с обычной питьевой водой две металлические или угольные пластины — электроды — и пропустим ток от источника, дающего небольшое напряжение.

Уже через 10 — 15 секунд термометр начнёт показывать повышение температуры жидкости.

Причину теплового действия тока можно объяснить, используя простые рассуждения. Электрическое поле, передвигая заряженную частицу, разгоняет её и совершает положительную работу, то есть увеличивает её кинетическую энергию. Но разгоняемая частица неизбежно и многократно сталкивается с частицами среды, (атомами, молекулами и ионами). Сталкиваясь, она передаёт им часть своей энергии, что приводит к увеличению их энергии, а значит, к росту внутренней энергии проводящей среды. Скорость заряженной частицы и её энергия при этом уменьшаются.

Кроме теплового действия, ток может производить в среде и химическое действие. Если внимательно понаблюдать за электродами в только что проводимом опыте, то можно увидеть образование на них мелких пузырьков газа.

Это не кипение воды при соприкосновении её с горячим телом. Электроды едва тёплые, в чём можно убедиться, потрогав их рукой. Это результат химических изменений в воде при пропускании через неё тока.

Поскольку исследование выделяемых газов в условиях школьного кабинета физики затруднительно, то мы видоизменим опыт, используя вместо обычной воды голубой раствор медного купороса CuSO4.

Опустив в сосуд чистые угольные электроды, через 1 — 2 минуты после включения тока мы увидим хорошо заметный красный налёт на одном из электродов, соединённом с отрицательным полюсом источника тока. Это — медь, которая выделяется из сложного соединения. Причём она очень чистая.

Читайте так же:
Как присоединить люстру три провода

Таким образом, химическое действие электрического тока проявляется в том, что при его прохождении через растворы солей, кислот или щелочей на электродах выделяется вещество.

В твёрдых телах, где образующие среду частицы (атомы, молекулы, ионы) весьма жёстко связаны друг с другом и ограничены в своих движениях, химические изменения обычно не происходят.

Химическое действие тока используется на практике. Так английский химик и один из основателей электрометаллургии сэр Г. Дэви разработал методику получения металлов с наименьшим количеством примесей благодаря химическому действию тока.

Действуя по методике, использованной нами в опыте с медным купоросом, можно нанести на поверхности деталей и предметов тонкие слои никеля, хрома, серебра, золота, придающие покрываемым изделиям красивый вид и защищающие их от ржавления. Открытие и техническая разработка данного процесса, который называют гальванотехникой, принадлежит русскому учёному Б. С. Якоби.

Химическое действие ток может производить и в газах. Так, например, нидерландский физик М. Марум по характерному запаху и окислительным свойствам, которые приобретает воздух после пропускания через него электрических искр, открыл озон.

(Озон — это особая форма кислорода, молекулы которого состоят из трёх атомов).

Третье действие тока — магнитное — очень долго ускользало от внимания учёных и было обнаружено опытным путём лишь в 1820 г. датским физиком Х. К. Эрстедом. На одной из лекций он демонстрировал студентам нагрев проволоки электричеством от вольтова столба. На демонстрационном столе в этот момент находился морской компас, поверх стеклянной крышки которого, проходил один из проводов цепи.

Когда Эрстед замкнул цепь, кто-то из студентов случайно заметил, что магнитная стрелка компаса отклонилась в сторону, тем самым фиксируя наличие магнитного поля.

Мы же с вами для наблюдения магнитного действия тока проведём следующий эксперимент. Обмотаем медной изолированной проволокой железный стержень и пропустим по такой катушке ток.

Поднося к ней коробку с мелкими железными предметами (гвозди, шурупы, гайки), мы увидим, что катушка с током превращается в достаточно сильный магнит, причём свойство это связано именно с текущим током. Действительно, выключив ток, мы увидим потерю катушкой магнетизма.

Читайте так же:
Выключатель регулируемый для люстры

Магнитное действие тока, наблюдаемое в этом опыте, является самым универсальным действием. Оно проявляется при протекании тока как в твёрдых телах, так и в жидкостях, газах. Также если заставить направленно перемещаться заряды в сильно разреженном пространстве, то и здесь ток будет производить магнитное действие (в технике такое явление называют током в вакууме).

Посмотрите внимательно на рисунок, на котором изображён электрический звонок. В основе его работы также лежит магнитное действие электрического тока.

Ток в цепь звонка поступает через клеммы А и В. В точке С проводник с током соединяется с подвижной металлической пластиной, благодаря которой молоточек звонка ударяет по звонковой чаше.

Теперь рассмотрим взаимодействие проводника с током и магнита.

Поместим между полюсами подковообразного магнита металлическую рамку, соединённую с источником тока. Рамка находится в покое, пока цепь не замкнута, то есть пока в ней нет электрического тока. При замыкании цепи рамка повернётся.

Наблюдаемое нами явление взаимодействия рамки с током и магнита лежит в основе работы гальванометра — прибора, с помощью которого можно судить о наличии тока в проводнике и его направлении.

Стрелка этого прибора связана с подвижной катушкой, и когда в катушке появляется ток, она откланяется, увлекая за собой стрелку прибора.

Во второй половине ХХ в. были созданы принципиально новые источники света. Излучение света происходит в них не за счёт высокой температуры проводящей ток среды, а в силу более сложных процессов. Это светодиодные лампы, которые всё чаще применяются в повседневной жизни.

Здесь используется ещё одно действие тока — световое. Таким образом, световое действие тока обнаруживается в появлении светового излучения при прохождении электрического тока.

Уравнение Джоуля-Ленца

Посмотрим, как данный закон выражается в математическом виде. Допустим, на некоем участке цепи проходит электрический ток и вызывает нагревание проводника. Если на этом участке нет каких-либо механических процессов или химических реакций, требующих энергозатрат, выделенная проводником теплота Q равна работе тока A.

Читайте так же:
Двухклавишные выключатели схема подключения для люстр

Q = A

Поскольку А = IUt, где I — сила тока, U — напряжение, а t — время, Q = IUt.

Теперь вспомним, что напряжение можно выразить через сопротивление и силу тока U = IR. Подставим это в формулу:

Q = IUt = I(IR)t = I 2 Rt

Q = I 2 Rt

Мы выразили количество теплоты в проводнике через сопротивление — эта формула для закона Джоуля-Ленца называется интегральной.

Но бывает так, что сила электрического тока неизвестна, зато есть информация о напряжении на участке цепи. В таком случае нужно использовать закон Ома:

I = U/R

Исходя из этого, закон Джоуля-Ленца можно записать в виде дифференциальной формулы:

Напомним, что такое уравнение, как и предыдущее, верно только в том случае, когда вся работа электрического тока уходит на выделение тепла и нет других потребителей энергии.

Итак, у нас есть две формулы для определения количества теплоты, выделяемой проводником при прохождении через него электричества:

При расчетах используют следующие единицы измерения:

количество тепла Q— в джоулях (Дж);

силу тока I — в амперах (А);

сопротивление R — в омах (Ом);

время t — в секундах (с).

Общие электротравмы

Они подразделяются на электрический шок и электрический удар.

Электрический удар – воздействие на органические ткани посредством электрического тока, в результате которого происходит резкое сокращение мышц. Человек, получивший поражение электрическим током, первое время предстает в рассеянном виде, появляются проблемы с памятью.

Даже если после удара у пострадавшего не диагностируют серьёзные последствия, в конечном итоге страдает иммунитет человека. В дальнейшем могут проявиться осложнения сердца и неврологические заболевания.

  • первая – происходят судороги мышц, при этом человек находится в сознании без каких-либо отклонений;
  • вторая – наряду с неравномерным изменением мышц человек теряет сознание, при этом работа сердца и дыхательной системы стабильна;
  • третья – с потерей сознания происходит замедление сердцебиения и дыхания;
  • четвертая – самая тяжелая, при которой не наблюдается признаков жизни, происходит остановка дыхания и пульса, наступление смерти.
Читайте так же:
Как подсоединить провода китайской люстры

Электрошок относится к тяжелым последствиям влияния электрического тока. Сначала у человека наступает период возбуждения, при котором человек не чувствует боли, а лишь ощущает повышение давление. Через некоторое время давление спадает, увеличивается сердцебиение, и пострадавший переходит в депрессивное состояние. Этот период может длиться от четверти часа до суток.

Выздоровлению способствует только своевременное и профессиональное лечение. Если не оказать первую помощь при поражении током, последствия окажутся куда печальнее.

Как правильно читать электрические схемы

Принципиальная схема электроцепи отображает все детали и звенья, между которыми протекает ток через проводники. Такие схемы являются базой для разработки электрических приборов, поэтому чтение и понимание электрических схем является обязательным для любого электрика.

Грамотное понимание схем для начинающих дает возможность понять принципы их составления и правильного соединения всех элементов в электрической цепи для достижения ожидаемого результата. Чтобы правильно читать даже сложные схемы, необходимо изучить основные и второстепенные изображения, условные знаки элементов. Условные знаки обозначают общую конфигурацию, специфику и назначение детали, что позволяет составить полноценную картину прибора при чтении схемы.

Начинать ознакомление со схемами можно с небольших приборов, таких как конденсаторы, динамики, резисторы. Более сложны для понимания схемы полупроводниковых электронных деталей в виде транзисторов, симисторов, микросхем. Так в биполярных транзисторах предусмотрены как минимум три вывода (базовый, коллектор и эмиттер), что требует большего количества условных обозначений. Благодаря большому количеству разных знаков и рисунков можно выявить индивидуальные характеристики элемента и его специфику. В обозначениях зашифрована информация, позволяющая выяснить структуру элементов и их особые характеристики.

Часто условные обозначения имеют вспомогательные уточнения – возле значков имеются латинские буквенные обозначения для детализации. С их значениями также рекомендуется ознакомиться перед началом работы со схемами. Также возле букв часто имеются цифры, отображающие нумерацию или технические параметры элементов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector